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Abstract

A new three-dimensional variable-order singular boundary element has been constructed for stress analysis of three-
dimensional interface cracks and internal material junctions. The singular fields in the vicinity of crack front or junction
have been accurately represented by the singular elements by taking account the variable order of singularities and the
angular profiles of field variables. Both the singular stress fields and displacement fields are independently formulated
by the element’s shape functions. Different kinds of displacement formulations are investigated. The formulation com-
bining singular and linear terms is found to be the most accurate one. The mixed-mode stress intensity factors are trea-
ted as nodal unknowns. The variation of stress intensity factors along the line of singularity can be obtained directly
from the final system of equations and thus no post processing, such as three-dimensional J-integral or domain integral,
is necessary. Numerical examples involving stress singularity, such as penny-shaped cracks in homogeneous and dissim-
ilar material interface, plates with through-thickness cracks, and a dissimilar inclusion, are investigated. The analysis
results are in good agreement with those reported in the literature.
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1. Introduction

Stress singularity problems often occur in structures where the geometry undergoes sharp changes. Typ-
ical examples include cracks and dissimilar material corners. In each of these cases, the singular stress fields
are generally three-dimensional in character. The fracture parameter, such as the stress intensity coefficient,
is a function of the position on the line of singularity and not a single constant as in the case of two-dimen-
sional singularity problems. This line of singularity is a locus of singularity points which may be a crack
front or an interior edge of a dissimilar material corner.

Three-dimensional stress problems due to singularities have not been investigated as extensively as their
two-dimensional counterparts. This is possibly due to the complexity in the formulation of the problems,
the requirement of large computer resources for numerical calculations, and the lack of efficient methods to
provide accurate results. Among the methods used for studying three-dimensional stress singularity prob-
lems and calculating fracture parameters, the finite element method (FEM) together with domain integrals
is commonly used to extract the results for the energy release rate. Excellent review papers on this subject
have been written by Moran and Shih (1987a,b). This method was employed by Li et al. (1985), and further
improved by Shih and Asaro (1988) using interaction energy integrals to extract mixed mode stress intensity
factors for planar crack problems. Nakamura and Parks (1988, 1989) have used the same approach to
analyze a thin elastic plate with a through-thickness crack for symmetrical and anti-symmetrical modes.
Kwon and Sun (2000) investigated a similar thin elastic cracked-plate and indicated the relationship be-
tween 3D stress intensity factors at the midplane and 2D plane stress results. Gosz et al. (1998) also used
the same method to calculate complex stress intensity factors for curved three-dimensional interface cracks.
All these analyses used an extremely fine finite element mesh in the vicinity of the crack front to determine
the displacement and stress fields. Post-processing techniques which usually involve the evaluation of some
energy integrals, such as the J-integral (Moran and Shih, 1987a), are then used to extract point-wise frac-
ture parameters along the crack front. Sub-modeling techniques are often used to achieve the fine mesh in
the vicinity of the crack front and this requires a very high computational cost. Also, this method is only
applicable to crack problems and it cannot be used for more general stress singularity problems such as
corners of bimaterial inclusions or multi-material junctions.

Special crack-tip elements have been developed for the FEM to replace conventional elements for eval-
uating the singular stress state in the vicinity of the crack front. Quarter-point elements that are easily
implemented by shifting the mid-side nodes are proposed to include the square-root displacement field
at the crack front (Henshell and Shaw, 1975; Barsoum, 1976). Tracey and Cook (1977) created a triangular
element incorporating the correct order of singularity originating at one node of the element. Lim and Kim
(1994) proposed a variable-order singular finite element to simulate the variable orders of singularity by
adjusting the location of the mid-side nodes. Their formulation is applied to cracks terminating at bimate-
rial interfaces. Pageau and Biggers (1997) employed enriched finite elements to analyze the singular stress
fields for three-dimensional crack problems. However, a high computational cost is still incurred due to the
complexities in three-dimensional stress problems.

In recent years, the boundary element method (BEM) provides an attractive alternative to the FEM in
the analysis of crack problems. The advantages of BEM over FEM are particularly important for three-
dimensional singularity problems. The dimension of the problem is reduced by one since only variables
on the boundary, instead of the interior, are used in the formulation. The solution for the boundary var-
iables is normally sufficient for most problems since the peak stresses usually occur on the boundary. The
BEM also provides a direct evaluation of the stresses on the boundary, while the FEM needs extrapolation
of the results from interior Gauss points. For the BEM, the displacements and tractions are considered as
the primary variables and they may use different shape functions. Both these quantities are thus evaluated
directly in the BEM, in contrast with the displacement-based FEM where the stresses are derived from the
displacements at a later stage. The BEM has been regarded as more capable of solving crack problems
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(Cruse and Vanburen, 1971; Aliabadi, 1997). However, in the conventional BEM, a fine mesh is still needed
in the vicinity of the crack front for analysis if normal quadratic boundary elements are used. Furthermore,
these elements cannot deal with unbounded discontinuous tractions occurring at a corner due to the abrupt
change of the normal to the boundary (Walker and Fenner, 1989). Special treatments have been proposed,
for example, by using a small curved boundary to replace the corner or using a discontinuous boundary
element (Mustoe, 1980; Aliabadi, 1997). Quarter-point singular boundary elements (Tan and Gao, 1990;
Gray et al., 2003) were also developed to accurately model the near crack tip displacement and traction
fields. However, these elements are generally designed for the square-root singularity fields near the crack
tip and may not handle general singularity orders other than half.

In this paper, a new variable-order singular boundary element is formulated to resolve the above-men-
tioned difficulties for three-dimensional stress problems. This is an extension of the formulation for two-
dimensional stress singularity problems presented by Lim et al. (2002). The singular field in the vicinity
of the line of singularity is assumed to be dominated by a combination of two in-plane and one out-of-plane
singular modes, with the stress intensity coefficients varying along the line of singularity. The variable or-
ders and angular field profiles are obtained separately from asymptotic singularity analysis. These asymp-
totic solutions form the basis of the shape functions in the new singular elements. Both asymptotic stress
and displacement fields are represented simultaneously for a better accuracy even in a very coarse mesh.
The new singular surface elements replace the conventional elements adjacent to the line of singularity.
Transition elements are not required because the singular elements are made naturally compatible with
adjacent normal quadratic boundary elements. This formulation also resolves the difficulties encountered
at a corner or edge where the traction field is discontinuous since the stress intensity factors and asymptotic
fields rather than the tractions are explicitly represented at the corner. The stress intensity factors are for-
mulated as nodal unknowns along the line of singularity and they can be directly obtained from the solu-
tion process. The post-processing step commonly used in the literature, is not necessary in this case.

2. Near-tip asymptotic singularity analysis

This section describes the method to obtain the singularity fields along the line of singularities. Fig. 1
shows a curvilinear crack front with the crack face on the inside region and the bonded face on the outside
region. A local orthogonal coordinate system is set up at point O along the crack front such that the y’-axis
is perpendicular to the plane of the crack, and the x'- and z’-axes, lying in the plane of the crack, are normal
and tangential to the crack front, respectively. Hartranft and Sih (1969) employed the asymptotic series
expansion in three-dimensions and showed that the near-tip behavior of the three-dimensional field in
the plane normal to crack front is identical to the two-dimensional plane strain field. However, the magn-
itudes of the singularities, that is, the stress intensity factors, vary with the position O on the crack front.

Fig. 1. Local coordinate system along curved crack front.
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This conclusion was used by many researchers to perform the analysis of three-dimensional crack problems
(Pageau and Biggers, 1997; Gosz et al., 1998; Cisilino and Aliabadi, 1999). Nakamura and Parks (1988) and
Kwon and Sun (2000) calculated an index of plane strain in the vicinity of the crack front numerically and
found that the index near the crack front is almost equal to unity, verifying the plane strain assumption. In
the current work, the near-tip singular field is assumed to be dominated by three singular modes: two in-
plane modes with the plane strain assumption, commonly known as mode I (opening) and mode II (shear-
ing), and one out-of-plane mode, commonly known as mode III (shearing). It should be noted that, even
with the provision of a variation in the stress intensity factors along the crack front, the current formulation
is not applicable to the corner where the crack front intersects with the free surface. This is due to the pres-
ence of a corner singularity which has a different order (Benthem, 1977). The treatment of this corner sin-
gularity is beyond the scope of this paper, and it will be examined in detail in the future work. For the
analysis in this paper, the effect of the corner singularity is neglected since it is only restricted to a small
region around the corner.

In the vicinity of a point on the line of singularity for a three-dimensional stress singularity problem, the
stress fields and displacement fields can be written in terms of asymptotic solutions as

u= ichr;“hﬁ(ﬂ) (1)
o= zi: Cir g, (0) (2)

where u and ¢ are the displacement vector and stress tensor, respectively, r is the distance between singu-
larity tip O and the point of interest in the normal plane Ox’y’, 1, is the hth order of singularity, 4 repre-
sents the order of the mode (I, II or III), € is the angle between x-axis and the radial line to the point of
interest in the normal plane Oxy, f;(60) and g;(0) are the tensors giving the angular profiles of the displace-
ments and stresses, respectively, and C), are the stress intensity coefficients. Analyses show that the order for
mode III is generally a real number which suggests that the corresponding stress intensity coefficient Cyyy is
also real. However, for the two in-plane modes (I and II), the orders of singularities may be real numbers or
complex numbers, depending on actual geometry and material configurations. If the orders of modes I and
IT are two real numbers, the two corresponding stress intensity coefficients Cy and Cyy are also real. If modes
I and II are governed by a pair of complex orders, their corresponding stress intensity coefficients are con-
jugate to each other (Lim et al., 2002). Hence, in the case where Cy and Cy; are a pair of conjugate complex
stress intensity coefficients, their real and imaginary parts are used as two independent real unknowns in-
stead. Thus, there are always only three independent real components of stress intensity coefficients asso-
ciated with any singular point along the line of singularities. These three real components are represented
by K, (h =1, I1, III), to differentiate from the possible complex coefficients C;. In the following sections, the
formulations are written based on the real variable-orders for a clearer illustration. The formulation cor-
responding to complex orders of singularities follows a similar fashion except for slight variations in han-
dling real and imaginary components of the field variables.

The general asymptotic displacement and stress fields near tip O along the line of singularity for the
three-dimensional stress singularity problem are given in Eqgs. (1) and (2), respectively. Considering the
superposition of the three modes (I, II and III), Egs. (1) and (2) can be written explicitly as

Uy fb((e) ﬁlx(e) 0
u, | =K' | fi(0) | + K| fug(0) | + K™ 0 (3)
u, 0 0 fllIZ(())
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O Oy O 8x(0)  81,,(0) 0
Oy Oy 0p | =K' | g,(0) g1,(0) 0
0w 0n 0. 0 V{21 (0) + g1,,(0)}
g (0) gllxy(g) 0
+ Ky gy (0)  &m,,(0) 0
0 0 V{1 (0) + gu,, (0) }
0 0 gu-(0)
+ Kyr'm™! 0 0 g, (0) (4)

g (0) gIII}z(Q) 0

where v is Poisson’s ratio.

Again, it should be emphasized that the orders of singularity A and the angular profiles of field variables f
and g in Egs. (1)—(4) are functions of material properties and geometrical configuration only. They are inde-
pendent of the external loadings.

To obtain the orders of singularity and angular profiles, a two-dimensional cross-section orthogonal to
the singularity line is considered. Based on the geometry of the material system, the governing elasticity
equations for each material and the boundary conditions at the interfaces are written. This system of equa-
tions gives rise to an eigenvalue problem with the orders of singularity as eigenvalues and the angular pro-
files of displacements as eigenfunctions. For a simple geometry, as in the case of a crack in homogeneous
medium, analytical solutions for the eigenvalue problem are readily available. However, for a more com-
plicated geometry that involves more than one material with arbitrary sector angles (for example, a square
inclusion), a numerical scheme is needed to solve the eigenvalue problem for the orders of singularity and
the angular profiles. The formulation and numerical solution for the eigenvalue problem related to the in-
plane singularities (mode I and II) are described in details in Lim et al. (2002). A similar approach is used to
obtain the solutions for the out-of-plane (mode III) singularity orders and angular profiles (Zhou, 2003).

For the BEM, tractions rather than stresses are used as nodal values. The three-dimensional singular
traction field is more complicated than its counterpart in two-dimensional problems. It is not easy to obtain
it directly from the eigensolution. However, the traction field can be derived from the singular stress field.
The singular traction field in the vicinity of the singularity front associated with a surface can be obtained
from

tx Oxx ny Oxz ny plx(e) pllx(H) plllx(e)
tl =10y 0, o:||n|= Ky ply(H) + Kyt pHy(B) + Kyppr/m-! pHIy(G)
t; Oy Oy Oz n; Pi(0) Pi(0) P(0)

(5)
where n,, n, and n. are the components of the normal vector, and p(0) is the traction vector representing the
angular traction profile. They are given by

plx(e) glxx(e) glxy(e) 0 Ny

PIy(Q) = glxy(e) egy(e) 0 n, (6)
plz(e) 0 0 v{gb(x(g) +glyy(0)} n;

Pu(0) g (0) gllxy(g) 0 n,

plly(9> = | & (0)  guyy(0) 0 ny (7)

Pi-(0) 0 0 Vg (0) + gu, (0} | | 12
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plllx(g) O 0 gIsz(O) ny
pu(0) | = 0 0 guy=(0) | | n, (8)
P(0) gu(0) g 111;:(9) 0 n;

The analytical expressions for the three-dimensional asymptotic displacement and traction fields at the
near-tip regions as shown in Egs. (3) and (5) form the basis to construct the three-dimensional singular
boundary elements in Section 4.

3. Formulation of variable-order singular element

In this section, the formulation of a new nine-node singular boundary element is presented. Singular ele-
ments replace all the normal elements with three nodes lying on the crack front, as shown in Fig. 2. The
displacement and traction fields within the singular element are constructed independently based on the
asymptotic fields given in the previous section. However, several polynomial terms including both the con-
stant and linear terms must be added so that rigid body motion is taken into account. The presence of
non-singular polynomial fields is important as the singular elements generally need to cover a region sub-
stantially larger than the singularity dominant zone.

3.1. Traction field formulation

The construction of traction field within the singular element is elucidated by the element marked by
nodes 1-9 lying on the bonded face (Fig. 2). The intrinsic coordinates & and #, varying between —1 and
1 within the element, are chosen to lie along the local Cartesian coordinates z’ and x’ respectively. Hence,
the plane strain singular fields lie along the #-direction with the stress intensities varying along the &-direc-
tion. The traction fields within the singular elements can be expressed as a combination of the singular
terms and the non-singular polynomials as

3
= (an + aué + au &) py(0) + as + asé + agn + arén + as& + agn )
h=1

where #; is the ith component of the tractions at the coordinate (&,7), and a;,,a; (i = 1-9) are the independ-
ent coefficients to be determined.

The first part in Eq. (9) represents the contribution from the singular fields in which the stress intensity
coefficients are assumed to have a quadratic variation along &, and the order of singularity A4, and angular
profile p;,(0) are assumed to be unchanged along the crack front. The second part which includes a non-

crack faces /i

crack front

Fig. 2. Typical 3D edge singular element.
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Fig. 3. Pascal triangle.

singular field is obtained according to the sequence in the Pascal triangle, as shown in Fig. 3. The last poly-
nomial term in Eq. (9) is chosen to be ag&?y instead of aqn”, because among all the possible terms including
02, &, &, & and n, only the use of the term &%y generates a unique solution for all the independent coef-
ficients ¢; in Eq. (9) in the procedure shown next.

The coefficients @; can be expressed in terms of the nodal tractions tf"” at the non-singular nodes m
(m =4-9) and the stress intensity factors K,S") at the singular nodes n (n = 1-3 and 4 =1, II, III denoting
the modes). Such relationships are established by substituting the appropriate nodal tractions, stress inten-
sity factors and coordinates (¢, 7) into Eq. (9), forming a system of equations from which the coefficients a;
can be obtained. The expression for describing the traction fields within the singular element is then given
by

3 9
=Y (NYK +NPKD + NGKD) + > N (10)
h=1 m=4
where N (m = 4-9) are the shape functions for the non-singular nodes m and Nl(-;:) (n=1,2,3) are the
shape functions for the ith component at the singular node n corresponding to the #th mode. These shape
functions are given by

Ny = {7 pa(0) = (1= m)lr " py (O], — 1l pu(0)],1}(0.58 = 0.5¢) (11)
NG = {7y (0) = (1= ml " pa (0], — ' Py (0)], 1 }(1 = &) (12)
NG = {7y (0) — (1= m) [ py(0)], o — ™" py(0)],_ }(0.58 + 0.5¢) (13)
N = (1 —1)(0.5¢ +0.5¢) (14)
N©® = 5(0.58 4 0.5¢) (15)
NO =y(1-¢&) (16)
ND = 5(0.58 —0.5¢) (17)
N® = (1 —9)(0.58% —0.5¢) (18)
NO =1 =1 -&) (19)

The shape functions N (corresponding to the non-singular nodes) are unity at the self-node m and zero
at the other nodes. However, the shape functions N f,f) (corresponding to the singular nodes) are infinite in
value at node n and zero at the other nodes.
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It is interesting to note that the above formulation can also be obtained by simply employing the Lag-
range interpolation. Since the traction field along the y-direction is that of the plane strain solution, it can
be directly written by a combination of n-direction singular fields due to three singular modes and linear
terms. Using edge 1-8-7 as example and noting # varying from —1 to 1, the traction field along #-direction
can be represented by

3
li = Z{rihilpih(g) —(1- ,,I)[rlrlpih(g)]”:o - ”I[”;'hilpzh(e)]n:l}[(gl) +(1- 77)1‘1('8> + 'itz@ (20)
h=1

where Kﬁll) is the iith component of the stress intensity factors at the singular node ad t,(g) and t,m are the
tractions at the other two non-singular nodes along n-direction. On the other hand, the nodal variables
along the &-direction, like K;l), tl(-g) and t,m are assumed to vary in a quadratic form. For the variation of
& from —1 to 1, the traction variation along the &-direction can be explicitly written by

f; = (0.5 +0.56) + (1 — 9 4 (0.5¢% — 0.5¢)17 (21)

where tl(-s), t§6), t,m are tractions of node 5-6-7 respectively as shown in Fig. 2. According to the concept of
Lagrange interpolation, the traction field within the whole surface singular boundary element can be ob-
tained by the product of the traction tensor along the -direction shown in Eq. (20) and the traction tensor
along the £-direction shown in Eq. (21). The result of this Lagrange interpolation is found to be identical to
that shown in Egs. (10)—(19). The details to obtain the formulation by employing the concept of Lagrange
interpolation are briefly described in Zhou (2003). The two kinds of formulations have identical results be-
cause the singular fields in the plane normal to the crack front are dominated by plane strain singularities,
and the singular fields take a similar form in each normal plane with only their intensities varying along the
crack front in a quadratic variation.

The singular boundary element based on Eq. (10) is naturally compatible with its neighboring elements.
This can be verified as follows. The compatibility requirement for any two elements sharing a common edge
is that the field variations of the two elements reduce to the same profile at the common edge. Consider the
common edge represented by nodes 5-6-7 shown in Fig. 2 between the singular element and a normal nine-
node quadratic element. From Eq. (10), it can be shown that traction variation along this edge from the
singular element reduces to exactly Eq. (21). Obviously, Eq. (21) is identical to the formulation on the com-
mon edge from a nine-node normal quadratic element. Next, consider the common edge represented by
nodes 3-4-5 shown in Fig. 2 shared by two singular elements. The traction variations from both elements
along that common edge are identical as given by Eq. (20). Hence, the compatibility conditions are fully
satisfied between neighboring singular elements. Since the singular boundary element satisfies the compat-
ibility conditions with its neighboring elements (including both singular and normal quadratic elements),
there is no need for transition elements, such as those used for the enriched singular finite element (Pageau
and Biggers, 1997).

3.2. Displacement field formulation

Similar to the above traction formulation, the displacement shape functions can also be constructed by
employing the concepts of Lagrange interpolation, that is, they are the tensor products of the correspond-
ing one-dimensional interpolation functions. The displacement fields along the &-direction of the intrinsic
coordinates are assumed to have a quadratic variation, while the plane strain asymptotic singular fields are
dominant along the #-direction. In contrast to traction formulation discussed above, there are more alter-
natives to formulating the displacement fields along the y-direction. These options include the purely quad-
ratic formulation, the formulation with singular and linear terms, and the formulation with singular and
quadratic terms.
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3.2.1. Purely quadratic terms

Since the nodal values of displacement at the crack front are finite, they can be used directly as the nodal
unknowns. In this case, the displacement field along the 5-direction within the singular element is assumed
to be of a purely quadratic form with no singular terms shown in Eq. (1):

u; = a+ by +cn’ (22)

Since the displacement field is of a quadratic form in both & and 5 directions, the formulation of the dis-
placement field is the same as a normal nine-node quadratic element. It can be simply written as

9

u= 3 NOE ! (23)

J=1

where uy ) is the ith component of the displacements at node j, N’ are the standard shape functions at node j
for normal nine-node quadratic elements, as given in many textbooks (see for example Becker, 1992).

3.2.2. Singular and linear terms
In this case, the displacement field along the n-direction is assumed to contain the asymptotic singular
field in addition to the linear terms which represent the non-singular field:

u = ZK},I’A}'.](;';,(G) +a; + blﬂ (24)
h=1

Here, 4 and f{6) are the eigensolutions as shown in Eq. (1) and «; and b; are two independent coefficients in
the ith component. Again, Eq. (24) can be written in terms of the unknown nodal displacements at the three
nodes along y-direction. In this case, the stress intensity factor K is considered as one of the unknown coef-
ficients. Since the components of the asymptotic displacement angular profiles are not independent of each
other, all three components of nodal displacements need to be considered together. The element edge rep-
resented by nodes 3-4-5 shown in Fig. 2 is used to illustrate the construction of the displacement formula-
tion along the n-direction. Along this edge (£ = 1), there are nine components of nodal displacements,
which correspond to nine independent coefficients including three components of stress intensity factors
at node 3 and three components of coefficients a and b, respectively. By specifying appropriate nodal dis-
placements and local coordinates in Eq. (24), a set of linear equations can be established as shown:

ul® r 0 0 0 1 =10 0 0 07¢( K,
u 0 0 0 0 0 1 -1 0 0|] Ky
u® 0 0 0 0 0 0 0 1 -1 K
ul® (0.5L)" £1,(6)  (0.5L)™ f11(6) 0 1 0 0 0 0 0 a,
u® Y = | (0.5L)" f1,(0)  (0.5L)™ fiy,(6) 0 0 0 1 0 0 0 b,
ul® 0 0 (050" f(0) 0 0 0 0 1 0 ay
ul® Lf1.(0) L f11.(0) 0 1 1.0 0 0 0 by
ud L f3,(6) L fi1,(6) 0 00 1 1 0 0 a.
u L 0 0 L'f.(0) 0 0 0 0 1 1]\ b
= [4[K. Ky Km a by a, b, a b.]" (25)

where L is the length of edge 3-4-5, and A4 is the coefficient matrix. Solving this set of linear equations for
the unknown coefficients and substituting them back into Eq. (24), the displacement field along the y-direc-
tion can be rewritten in terms of the unknown nodal displacements as
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3)
(3)
1,
g )
<:*>

4)
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<
w

<
w
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U, 1 (0) 7 (0) 0
uy o= [ r1fi,(0) 1 fu,(0) 0
u, 0 0 r’A““fmZ(Q)

S O =
oS O =
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o = O
- O O
= O O

B
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<
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<
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w

(
o
)(C )
(%)
v
u®®

<

=M[ud WD u u® u® u® ud ud U 26)

where M is the interpolation matrix. By partitioning M into its sub-matrices as
[M] = [M, M, M;] (27)
the sub-matrices M, M, and M3 become the shape functions for nodes 3,4 and 5, respectively. These shape

functions are enriched with the singular displacement field. The displacement field along the y#-direction can
then be explicitly written as

Uy ul u® ul®
u, » = [M)] u)(,3> + [M3)] uﬁ“) + [M3] u§,5) (28)
u; ul u® ul

Since the displacement field along the &-direction is of a quadratic form, the complete displacement field
of the singular boundary element can be constructed by employing the Lagrange interpolation to give

9
=y BU(E ) (29)
j=1

where BY(¢, 1) is the enriched shape function for node j. The details of BY(¢, 1) are too complicated to be
written explicitly here, but it can be easily obtained through matrix operation as shown above.

3.2.3. Singular and quadratic terms

Another alternative formulation for the displacement field is to use the singular field shown in Eq. (1)
and the quadratic terms that represent the non-singular field. Thus, along the n-direction, the displacement
field is expressed as

3
u; = ZKhrilhfih(H) +a; + b,”] + Ci772 (30)
h=1

In contrast to Section 3.2.2, the stress intensity factors are no longer considered as unknown independent
coefficients but these are the same as those prescribed in the traction formulation. Hence the displacement
and traction variations in this element are explicitly coupled through its shape functions. Three independent
unknown coefficients a;, b; and ¢; are used instead. For each component of the displacement fields, there are
three unknown nodal displacements corresponding to three independent coefficients a, » and c¢. Similar
to the previous formulation in Section 3.2.2, a set of linear equations can be established to solve for the
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coefficients a;, b; and ¢;, in terms of the nodal values. For example, the displacement field along the -direc-
tion the edge 3-4-5 can be rewritten in terms of the nodal displacements and the nodal stress intensity fac-
tors as given by

= 0.5n(n — Du™ + (1= )u® +0.57(n + 1 5+Zw in(0) = (1= ) {r" " £iu(0)},

— (0.5n(n + D) fu(0)}, 3K, (31)

The first three terms are the same as the conventional one-dimensional quadratic formulation and the
fourth term represents the inclusion of the singular fields.

Since all the field variables including the stress intensity factors and displacements vary in a quadratic
manner in the ¢-direction, the complete displacement formulation for the singular boundary element can
be obtained by means of Lagrange interpolation as

3
=3 NO(E ! +Zos¢ —1)Q,K! +Zl— JOKY +3 058 +1)0,K,) (32)

Jj=1 h=1 =1

where NV is the conventional nine-node quadratic shape function at node ;. Kﬁf) is the ~th component of the
stress intensity factor at node i, and

Oy =" fin(0) = (1 = ) [~ ()], o — (0-5n(n + 1)~ £ (0)],, (33)

The coefficients Kgf) in Eq. (33) are the nodal values of the stress intensity factors at the crack front,
which are those used in the traction formulation given in Eq. (10). Hence, in the final matrix assembly,
the matrix entries corresponding to the stress intensity factors have contributions from both the traction
and displacement formulations.

3.2.4. Discussions on displacement formulations

All the shape functions in the above three kinds of displacement formulations shown in Egs. (23), (29)
and (33) have the property that they are equal to one at its own node and to zero at the other nodes,
except for the function Q, in Eq. (33) which is zero at every node. This property allows all the three dis-
placement formulations to be easily incorporated into the final boundary element formulation. The three
formulations vary in the degree of inclusion of the singular field. The first formulation does not include
the singular fields, while the second and the third formulations include the singular fields in an uncoupled
and coupled manner. In contrast, the traction formulation in Eq. (10) does not have many variations as
the displacement formulation since the tractions at the crack front cannot be used as nodal unknowns,
and only the stress intensity factors can be used as appropriate nodal values. Thus, three types of
three-dimensional singular boundary elements can be constructed with traction formulation in Eq. (10)
combined with a choice of the three displacement formulations. All three types of singular elements have
been implemented in the present work, and the results are compared in the third example in Section 6. A
system in plane strain condition is simulated by imposing symmetric boundary conditions on the two free
surfaces normal to the crack front and the results show that the displacement formulation with singular
and linear terms is most accurate and the quadratic formulation with no singular terms is the least accu-
rate. The formulation with singular and linear terms is more accurate than the formulation with singular
terms and quadratic terms because the former is less constrained, being uncoupled from the traction for-
mulation. Hence, in the following work, only the results generated by the displacement formulation with
the singular and linear terms are reported.
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3.3. Coordinate transformation

So far, the above three-dimensional singular element formulations are discussed in the local coordinate
system. However, during the assembly of the contributions from the singular elements together with other
normal quadratic elements, the global coordinate system is required. In complicated structures such as
curved crack problems, the local coordinate system near the front may be different form the global coor-
dinate system. Therefore, transformation of the singular fields from local coordinates to global coordinates
for general cases is necessary. It is noted that the expressions for stress intensity factors given in Egs. (10)
and (31) are valid only in the local coordinate system, and must remain as such. In contrast, the nodal trac-
tions in Eq. (10) and the nodal displacements in Egs. (23), (29) and (31), must be expressed in terms of glo-
bal nodal values so that assembly can be done correctly for both the singular elements and the normal
quadratic elements. Suppose A4 is the transformation matrix from the local coordinate system (x'y’z’) to
the global coordinate system (xyz). The traction field shown in Eq. (10) can then be rewritten in terms
of global coordinates as

9
{6} = A{y = ANORKDY + ANCHKD) + ANOUKDY + D AN (1) (34)
m=4
where { K"} is the vector of stress intensity factors at node i in local coordinates, {"} is the vector of trac-
tions at node m in global coordinates, and [N”]is the vector of shape functions at node i. The transforma-
tion matrix 4 can be obtained from the cosines of the angles between the respective axes of the two
coordinate systems.
Similarly, the displacement field in the global system can also be obtained by transforming from the local
to the global coordinate systems. For the formulation in Egs. (23) and (29), the transformations are, respec-
tively, given by

{u} = A{u'} = S ANV () (3)
{u} = A{w) = S A () (36)

where {1} is the displacement vector in the global system at node j. However, for the formulation in Eq.
(31), the stress intensity factors are local values, and the transformation is given by

{u} = 4{u'}
=D ANV} +0.56(E = DA{OHK "} + (1 = E)A{OHK®} +0.5E(E + DA{OHK™}

(37)

where {Q} is the vector of functions Q,, (h=1,2, and 3).

4. Three-dimensional boundary element method

The new three-dimensional singular boundary element can be easily incorporated into a standard three-
dimensional boundary element stress analysis code which uses quadratic elements. The detailed formula-
tion of the boundary element method can be found in textbooks (see, e.g., Becker, 1992). The following
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gives a brief outline of the method with the inclusion of the singular elements. For each of the homogeneous
domains in the multi-material system, a boundary integral equation governing the elastostatic stress state
may be written in the form

cijuj(p)—&—/FT,-,-(P7Q)uj(Q)dF:/FUij(P,Q)ti(Q)dF (38)

In the above equation, #; and #; are the displacements and tractions, respectively, and U and T}; are the
second-order displacement and traction tensors at a field point Q on the boundary due to a unit point load
at the variable point P. These are obtained from the fundamental solution to Kelvin’s problem, and in three
dimensions are given by

_ 1 1 or(P, Q) or(P,0)
P9 =t g O T ) >
_ -1 ai"(P, Q) Gr(P7 Q) Gr(P, Q)
Ty(P, Q) = 8n(1 —v)r’(P,Q) On {(1 = 20)0; +3 Ox; Ox; }
1-2v or(P, Q) or(P, Q)
T8l - 0P, 0) { o T ”l} (40)

where r is the distance between P and Q, and n; are the components of the normal to the boundary at Q.
The free-term coefficients ¢;; can be easily evaluated from the fact that Eq. (38) must be valid for rigid body
displacement fields.

For a quadratic boundary element, the displacements and tractions can be formulated in terms of shape

functions N(&,57) and nodal values ', 1) as
9
w = NOE&nu (41)
c=1
9
b= 3 NOE (42)
c=1

where N are the shape functions of normal nine-node quadratic elements as shown in Eq. (32). By dis-
cretizing the surface of the domain and applying Gaussian quadrature, the integral equation (38) can be
put into a matrix form as

[H|{u} = [G{z} (43)

where [H] and [G] are the coefficient matrices, and {u} and {¢} are the nodal values of the displacements and
tractions, respectively.

When the singular elements are used to replace the normal elements in the vicinity of the crack front, the
unknown stress intensity factors take the place of the unknown tractions at the crack front and are put in
the vector {z}. The contributions from the singular elements also appear in the coefficient matrices [H] and
[G]. Hence, the total number of unknowns when singular elements are used is the same as the case when
only normal boundary elements are used. Thus, the problem can be uniquely solved when singular elements
are employed.

5. Integration of singular boundary elements

Compared with the finite element method, the integrations in the boundary element method is much
more difficult. This is because the integrals in Eq. (38) may become singular even for normal non-singular
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boundary elements. The three-dimensional Kelvin solution gives rise to strong singularities when the source
point falls on the elements, since it has terms of r~' and 2. Methods to evaluate the integrals in Eq. (38)
accurately for normal non-singular elements have already been established (Becker, 1992; Tan and Lee,
1983). The use of singular elements introduces an additional weak singular part since the shape functions
for the singular traction field in Eq. (10) have terms of *~' (0 < Re(/) < 1). The shape function tends to an
unbounded value when the field point approaches the crack front. At the same time, strong singular inte-
grals due to terms of r~' and r~? are still present if the source point falls on the singular elements. In this
case, strong singular terms and weak singular terms are coupled and they need special consideration.
These singular integrals are bounded and accurate values can be obtained in the same way as normal
integrals if the singular term is transformed to a non-singular form. Two steps of coordinate transforma-
tions can be done to remove the above two kinds of singular integrals. The first step is a geometrical trans-
formation to remove the strong singular integral caused by the Kelvin solution which is done by
subdividing the quadrilateral elements into several triangles and using collapsed bilinear elements for these
triangles. The second step is to perform an algebraic transformation to overcome the weak singular integral
caused by the shape functions in the singular element. Either one or both these steps need to be taken to
remove the singular integrals, depending on whether the source point falls on the singular elements or not.

Case 1: Source point is not on the singular element

In this case, the Kelvin kernels U;; and T}; are not singular. However, when the integration is performed
over the singular element, the shape functions N, in Eq. (10) are singular. In this case, algebraic transfor-
mation can be used to convert the singular integrand in Eq. (38) into a non-singular one.

For example, the integral on the right-hand side of Eq. (38) within the singular element can be written as

N U(@n){(%”f1F(é,n>}J<é,n>dfdn (44)

where U(&,n) is one of the kernels, J(&,#) is the Jacobian of transformation from global coordinates (x, y, z)
to intrinsic coordinates (&, ), and F(&,n) is a bounded function in the singular element. Now, introducing a
new variable s related to the local coordinate # by

1+s  (14+7)
= (2 > (45)
where
L(2 if 2> 05
2\ [ag] +1 if2<05 (46)

Eq. (44) becomes

/_1 /_i U(¢, n){;C (1 ;s)"«’F(f, r,)}J(g, n)déds 47)

It is seen that the integrand in Eq. (47) is bounded within the singular element. In Eq. (46), the function
[x] gives the greatest integer lower than x. A similar treatment can be made on the left-hand side of Eq. (38).
Subsequently, standard Gauss quadrature based on the new local coordinates ¢ and s can be applied, and
the integrals in Eq. (38) can be evaluated accurately.

Case 2: Source point falls on singular element, but not on same node as field point

Here, the kernels U and T); have strong singular terms, 1/r and 1/r? respectively, and the shape functions
for singular elements have the weak singular term of *~! (0 < Re(1) < 1). Both geometrical and algebraic
transformations are used to evaluate the integral.
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The first step is to transform the integral in terms of original intrinsic coordinates ¢ and 7 into new inter-
mediate intrinsic coordinates ¢ and s in the same way as demonstrated in Case 1. By doing this, the singular
part from the singular shape functions is removed. After this transformation, all the field variables as well
as the geometry of the singular elements are expressed in terms of the intermediate intrinsic coordinates &
and s.

Next, the singular element is sub-divided into several triangles. Three possible subdivisions as shown in
Fig. 4 are used for the cases when the source point P falls on the corner, middle and center nodes, respec-
tively. In order to improve the integration accuracy, two, four and eight triangles are used, respectively,
according to the cases shown in Fig. 4. For each triangle, a degenerate four-node rectangular element with
local intrinsic coordinates ¥ and 7y is used. Two nodes of the rectangular element collapse on the source
point P while the other two nodes coincide with the remaining two vertices of the triangle.

The coordinate transformation from the intermediate coordinates ¢ and s to the third set of local intrin-
sic coordinates Y and y can be written as

4

EWoy) =Y L, 7)E? (48)

i=1

4

s(W,7) =D LW, p)s"” (49)

i=1

where L' is the standard shape function at node i for a four-node rectangular element as given in most
finite element textbooks. The intermediate coordinates &” and s must be found before the geometrical
transformation is carried out. Suppose J(i/,7) is the Jacobian from the intermediate coordinates (¢, s) to
the local coordinates (y/,7). After the two steps, the integral in Eq. (44) then becomes

/]1 /11 U(fﬂ?){é (1 42-S>27lp(5,11)}¢](&j,17)](¢,y) dydy (50)

n
<
<7/
5 Y
=]
@ (b)

(©

Fig. 4. Sub-division of nine-node three-dimensional boundary element: (a) source point at corner node, (b) source point at middle
node, and (c) source point at center node.
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In Eq. (50), all singular terms in the singular traction shape functions and the singularities in the kernels
are removed. Normal Gauss quadrature can now be employed to accurately evaluate the integral in Eq.
(50).

Case 3: Source point falls on singular element, and also on same node as field point

In this last case, the scheme given in Case 2 can be used to evaluate the integral on the right-hand side of
Eq. (38) involving the U;; kernel. However, the integral on the left-hand side of Eq. (38) involving the kernel
T is very difficult to evaluate directly. Fortunately, as in the normal boundary element method, Eq. (38)
must be valid for all rigid body movement. This enables the value of the left-hand side integral to be found.

After the appropriate transformations, the singular terms in Eq. (38) are removed and they can be eval-
uated as normal integrals using standard Gauss quadrature. It should be noted that since Eq. (38) is not
made of polynomial terms, the accuracy of the integrals is not as easily achieved as in finite element formu-
lations where 3 x 3 Gauss points are good enough for nine-node quadratic elements. Here, for the nine-
node quadratic boundary elements, up to 8 x 8 Gauss points are recommended for a satisfactory accuracy.

6. Numerical examples

In this section, five numerical examples are presented to show the versatility and accuracy of the current
methodology for solving three-dimensional stress analysis problems with general orders of singularities.
The benchmark tests are (i) a penny-shaped crack embedded in an elastic cube, and (ii) a penny-shaped
crack embedded at the interface between two dissimilar elastic solids. Analytical results available in the lit-
erature are used for comparison. The other three examples with through-thickness cracks and bimaterial
inclusion are also investigated. The variations of the stress intensity factors through the thickness are deter-
mined. The results based on plane strain conditions for each case are also presented for comparison. For a
given problem, appropriate variable-order singular boundary elements are constructed to include the prop-
er singular field based on the preceding singularity analysis. These singular elements are then used along the
crack front or inclusion corner to replace those normal elements which are immediately adjacent to the
crack front or inclusion corner. The results of stress intensity factors are obtained as nodal values on that
line of singularity.

6.1. Penny-shaped crack embedded in an elastic cube

Fig. 5 shows the geometrical configuration of a penny-shaped crack (radius ¢ = 0.08b) in a cube with
edge b. The Poisson’s ratio of the material is taken as 0.3. The boundary element mesh (468 surface
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Fig. 5. Penny-shaped crack embedded in an elastic cube.
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Fig. 6. Boundary element mesh used for one-eighth of cube.

elements in total) used for one-eighth of the cube is shown in Fig. 6. In the vicinity of the crack front, only
six singular edge elements on each side of crack front are used. Since the cube is homogeneous and sub-
jected to remote tension a,, only mode I is present. Tada et al. (1973) showed that if the elastic cube is as-
sumed to be infinite, the stress intensity factor along the crack front is constant and is given analytically by

c
K() = 20’0\/; (51)

The stress intensity factors Kj obtained by the current BEM are compared against the theoretical value
by plotting the ratio of Ki/Kj as shown in Fig. 7. It can be seen that the present method gives results that are
very close to the theoretical value (within 5% error) even when relatively large elements are used.
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Fig. 7. Normalized mode I stress intensity factor along crack front.
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6.2. Penny-shaped crack embedded at interface between two dissimilar elastic solids

In this case, a small penny-shaped crack is embedded at the interface between two big dissimilar elastic
solids and subjected to remote tension o,. The geometrical configuration and material properties are shown
in Fig. 8. Only one-quarter of the problem needs to be modeled due to the symmetry present in the problem.
Fig. 9 shows the boundary element mesh (892 surface elements in total) used in the simulation. Again, sin-
gular elements are used only for the mesh immediately adjacent to the crack front. Mixed mode stress inten-
sity factors are present in this case due to the material mismatch at the interface. Kassir and Bergman
(1972) obtained the analytical solution for the complex stress intensity factors k as
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Fig. 9. Boundary element mesh used for one-quarter of problem.
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. (2 +ie) i
ki +ikyp =2 —_— 52
L K OFO\/EF(O.S—HS)( ) (52)
where I' is the gamma function and ¢ is the bimaterial constant. The term K with dimensions of [stress]
[length]™ is more often used to represent the complex stress intensity factors (Hutchinson and Suo,
1992), and this can be obtained from k by choosing the characteristic length to be 2¢ so that

r2+ie)

K+ = (ki -+ i) 26)" = 200 et s

(53)
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Fig. 10. Magnitude of complex stress intensity factor along crack front.
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Fig. 11. Phase angle of complex stress intensity factors along crack front.
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The theoretical complex stress intensity factors K can also be expressed by its magnitude

K| = +/Ki + K3, and its phase angle ¢ = arctan(Ky;/K;). The numerical results obtained by using the
new three-dimensional variable-order singular elements are shown in Figs. 10 and 11, for the magnitude
and the phase angle respectively. The analytical result is also presented for comparison. The results are rel-
atively close, with an error of about 20%. This error can further be reduced by using a finer mesh along the
crack front.

6.3. Thin homogeneous plate with a through-thickness crack
A thin homogeneous plate with a through-thickness crack with configuration shown in Fig. 12 under

remote tension o, is simulated. Only one-eighth of the plate is modeled due to symmetry present in the
problem. The boundary mesh (768 surface elements in total) is shown in Fig. 13. In order to verify the accu-
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Fig. 12. Thin homogeneous plate with a through-thickness crack.
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Fig. 13. Boundary element mesh used for one-eighth of problem.
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racy of the present method for three-dimensional stress singularity analysis, a loading under plane strain
condition is simulated by imposing symmetric boundary conditions on both free surfaces that intersect
the crack front. The three types of singular elements with the different displacement formulations described
in Section 3.2 are used in turn. Fig. 14 shows the results from these three types of singular elements. The
analytical result for the cracked plate under plane strain is given by Tada et al. (1973) as

K :K()fgeo(a7b7h) (54)

where K = 09\/7a, fseo is the geometric correction factor which is equal to 1.19 for this case, and « is the
half-crack length. The plane strain condition can also be simulated directly by using the two-dimensional
singular element method (Lim et al., 2002). This result is included in Fig. 14 as “2D simulation”. Fig. 14
shows that all three displacement formulations give satisfactory results. Among them, the formulation with
singular and linear terms is the most accurate one. The error is below 1% along the crack front. It can be
seen from Fig. 14 that both two-dimensional singular elements and three-dimensional singular elements
give very accurate results. The small differences between the results are very likely due to the fact that
the three-dimensional simulation inherently provides a through-thickness variation while the two-dimen-
sional simulation does not. Fig. 15 shows the three-dimensional results for the stress intensity factors when
the symmetry conditions are removed from the free surface at z/r = 0.5. The present analysis gives results
that are in good agreement with Kwon and Sun (2000) who analyzed the same problem using the domain
interaction integral method. It is expected that the stress intensity factor decreases when the crack front
approaches the free surface at z/t = 0.5, since this region is dominated by the corner singularity which usu-
ally is weaker than the internal near-tip field (Benthem, 1977).

6.4. Thick bimaterial plate with a through-thickness interface crack

A bimaterial plate with a through-thickness crack along the interface as shown in Fig. 16 under remote
tension o, is simulated. Fig. 17 shows the boundary element mesh (576 surface elements in total) for the
quarter-model of the plate. The bimaterial plate is subdivided into two regions in which each region is made
of one homogeneous material. Each region is discretized into surface meshes and the interface mesh is
shared by the two regions. The results for the complex stress intensity factors are expressed in terms of their
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Fig. 14. Normalized mode I stress intensity factor along crack front with symmetry conditions imposed on both free surfaces.
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Fig. 15. Normalized mode 1 stress intensity factor along crack front with surface at z/t = 0.5 traction-free.
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Fig. 16. Thick bimaterial plate with a through-thickness interface crack.

magnitudes and phase angles given in Figs. 18 and 19, respectively. The plane strain conditions are simu-
lated by imposing symmetric boundary conditions on both free surfaces at z/t = 0 and z/t = 0.5. The results
are compared with those obtained by using the two-dimensional singular element method with a similar
mesh and very good agreement is obtained. When the surface at z/t = 0.5 is made traction-free, a three-
dimensional stress state is induced. The corresponding stress intensity factors are plotted in Figs. 18 and
19. The figures show that the results are almost the same as the plane strain solution away from the free
surface. Near the corner where the crack front intersects the free surface, the magnitudes and phase angles
increase and decrease, respectively. This can be explained by the fact that the bimaterial plate is relatively
thick, and plane strain condition dominates along most of the crack front. At the corner where the crack
front intersects the free surface, the corner singularities with orders 4; = 0.512 and A, = 0.372 (Benthem,
1977) are present in the stress field. The stronger corner singularity (4; = 0.512) causes the increase in mag-
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Fig. 17. Boundary element mesh used for one-quarter of problem.
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Fig. 18. Magnitude of complex stress intensity factor along crack front.

nitude of the computed stress intensity factor when the corner is approached. It is also noticed that the
phase angle decreases to zero at the corner, which is consistent with the corner singularity being a real num-
ber. However an accurate analysis for the corner needs to be based upon an appropriate corner singular
element which takes the corner singularities into consideration.

6.5. Through-thickness bimaterial inclusion

A bimaterial system with a through-thickness inclusion as shown in Fig. 20 under remote tension o, is
simulated. Only one-eighth of the block is modeled. Fig. 21 shows the boundary element mesh (448 surface
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Fig. 20. Through-thickness bimaterial inclusion.

elements in total) for both materials. Two regions are created for the materials. Fig. 22 shows the mesh for
the inclusion. Within one-eighth of the plate, there are two interfaces, namely, the horizontal and vertical
interfaces. These two interfaces share a common internal bimaterial edge. Even though all the interfaces in
this case are fully bonded and no crack is present, singular fields occur near the internal edge due to the
material mismatch (Chen, 1994). In this case, the domain integral method may not be applicable since there
is no crack. However, the method developed in the current work may be easily applied to this singularity
problem as the orders of singularities are known and the displacement and traction profiles along the hor-
izontal and the vertical interfaces can be incorporated into the shape functions of the singular elements. The
orders of singularities corresponding to modes I, II and III are found to be 0.798, 0.786 and 0.732, respec-
tively (using the method described by Lim et al., 2002). A new stress intensity factor F'is introduced here. At
a point on the internal edge, the traction 7, and 7. on the horizontal interface can be defined by
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Fig. 21. Boundary element mesh used for one-eighth of problem.
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Fig. 22. Boundary element mesh used for inclusion.
Ty = 72171F10'0 + I’AH?IFHO'O

T. =r""'Fo,
where
F1 = Kipy,(0)p—/ 00

Fu = Knpu, (0)]_./ 00

Fi = Kmpy.(0) -/ 00

183

(55)

(56)

(57)
(58)

(59)

where K7, K1y and Ky are the nodal values of the stress intensity factors and g is the remote tension. The new
stress intensity coefficient F, has dimension of a!~* where a is the half-length of dissimilar inclusion edge and



184 W. Zhou et al. | International Journal of Solids and Structures 42 (2005) 159-185

1 —¥— 3D result for F |
—— 3D result for F "
sl O~ 3Dresultfor F |
' —%— 2D plane strain result for F |

—6— 2D plane strain result for F

Stress intensity coefficient F

0 0.1 0.2 0.3 0.4 0.5
Distance from the middle plane (z/t)

Fig. 23. Stress intensity coefficients along bimaterial inclusion edge.

h refers to modes I to II1. The results for three modes of F are shown in Fig. 23. Two-dimensional simulations
are also carried out with meshes of equivalent fineness, and the results are also plotted in Fig. 23. It is found
that the three-dimensional results for modes I and II are very close to the plane strain solutions for most of
the internal edges, while the intensity for mode III increases from the mid-plane to the free surface.

7. Conclusions

In this paper, a new three-dimensional variable-order singular boundary element is developed for three-
dimensional stress singularity problems. The new singular element incorporates both the variable orders
and the angular field variables (displacement and traction variations) along the line of singularities. Hence
it can provide a very accurate description of the three-dimensional stress singularities. By using the new sin-
gular boundary element, the variations of the stress intensity factors of the three singular modes (two in-plane
and one out-of-plane) along the line of singularities are determined. Different displacement formulations
including just quadratic terms, singular with linear terms, and singular with quadratic terms, are investigated.
The formulation with singular and linear terms is found to be the most accurate. These elements can be used
for both straight and curved crack fronts, as well as bimaterial inclusion corners. The methodology is verified
by solving embedded penny-shaped homogeneous and bimaterial interface crack problems where closed-
form solutions are available and satisfactory agreements are achieved. Simulation on through-thickness
bimaterial interface crack and through-thickness bimaterial inclusion problems are also performed. The
stress intensity factors which are normally difficult to determine using conventional numerical techniques
are easily computed with good accuracy using relatively coarse elements. The new singular boundary element
developed here proved to be efficient and robust for solving three-dimensional stress singularity problems.
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